MTH 203- Quiz 3 Solutions

1. Let σ be the n-cycle $(12 \ldots n)$. Then show that σ^{i} is a n-cycle if and only if $\operatorname{gcd}(i, n)=1$.
Solution. By 5.4 (iv) of the Lesson Plan, we know that $o(\sigma)=n$. Thus, it follows that $\langle\sigma\rangle \cong \mathbb{Z}_{n}$ via the isomorphism $\sigma^{i} \stackrel{\varphi}{\mapsto}[i]$, for $0 \leq$ $i \leq n-1$ (Verify this!). Thus, we have:

$$
\begin{array}{rll}
\sigma^{i} \text { is an } n \text {-cycle } & \Longleftrightarrow o\left(\sigma^{i}\right)=n & \left(\text { By } 5.4(\text { iv }) \text { and } \sigma^{i}(j)=i+j \bmod n\right) \\
& \Longleftrightarrow o\left(\varphi\left(\sigma^{i}\right)\right)=n & \text { (By 3.2 (vii)) } \\
& \Longleftrightarrow o([i])=n & \text { (By definition of } \varphi) \\
& \Longleftrightarrow \operatorname{gcd}(i, n)=1, \quad(\text { By } 1.4(\mathrm{v}))
\end{array}
$$

and the assertion follows.
2. Show that A_{4} has no subgroup of index 2 .

Solution. Since $\left|A_{4}\right|=12$, any subgroup H of A_{4} of index 2 has to be of order 6 . Thus, it follows that $H \cong \mathbb{Z}_{6}$ (or $D_{6}=S_{3}$) (Verify this! See also practice problem no. 3 in Homework VII).
Suppose that $H \cong \mathbb{Z}_{6}$. Then $H=\langle\sigma\rangle$, where $o(\sigma)=6$. So, it follows from Lesson Plan 5.4 (iv) that either σ is a 6 -cycle or the product of a 3 -cycle with a transposition. Since A_{4} has no tranpositions or 6 -cycles (why?), this is impossible.
Now, we assume that $H \cong S_{3}\left(=D_{6}\right)$. Since A_{4} has no tranpositions and only 4 symbols, H would have to contain three distinct elements of order 2 (as in D_{6}) which have to necessarily arise as products of two disjoint transpositions. Note that the identity permutation together with these 3 elements of order 2 form a subgroup of order 4 inside A_{4} (Verify this! See also Problem no. 1 in Homework VII.) and hence inside H. This is impossible since $|H|=6$.

